Insertion Devices for High Energy X-ray Research at the APS

Dean R. Haeffner

XFD Advanced Photon Source Argonne National Laboratory

December 5, 2002

High Energy Programs at the APS

- SRI-CAT/XOR 1-ID
 - Undulator A
- BESSRC-CAT
 - Elliptical multipole wiggler
- mu-CAT
 - Dedicated side station, shared beamline with lowenergy stations
- DND-CAT
 - Bending magnet, not optimized for high energies
- GSECARS-CAT

Undulator A at 6 & 7 GeV

High Energy Focusing

Experimental Setup

High Energy X-ray Perspective on Source Improvement

- Short period undulators
- Small gap ID chambers
- Horizontal source size
 - At high energy, source size, divergence dominated by storage ring contributions
 - For microfocusing, small β
 - For unfocused beam, large β

Undulator Design Factors

- Design for maximum brilliance
- Full spectral coverage above 35 keV
- The design will be based upon a minimum gap of
 8.5 mm
- Permanent magnet devices
- Two devices may be used for spectral coverage
- All devices will be 2.5 m in length
- Use APS storage ring values from August of 2001

Undulator Parameters

	UA	HEX-1	HEX-2
Period (cm)	3.3	2.25	2.05
Length (m)	2.5	2.5	2.5
Number of Periods	72	111	122
Minimum gap (mm)	10.5	8.5 (6.5)	8.5
$B_{max}(T)$	0.85	0.6 (0.85)	0.5
K _{max}	2.62	1.26 (1.8)	1.0
Total Integrated Power	5.4	2.8 (5.7)	2.1
(kW)			
Integrated Power in	160	168 (234)	155
1 x 1 mm ² @ 30 m (W)			

High Energy Undulator Brilliance

High Energy Undulator Flux

Undulator Tuning Curves

Conclusions

- Considerable gains in brilliance are available when two devices are used for spectral coverage.
- Power and power density is much less of a problem for short period devices.
- Gains of approximately a factor of 10 are available over Undulator A.
- Flux and brilliance criteria give similar results.
- Substantial gains would be available with a 6.5-mm vacuum chamber and likely APS storage ring upgrades.